题目内容

已知函数f(x)=
ax+1,x≤0
log2x,x>0
,则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是(  )
A、无论a为何值,均有2个零点
B、无论a为何值,均有4个零点
C、当a>0时有4个零点,当a<0时有1个零点
D、当a>0时有3个零点,当a<0时2个零点
考点:函数零点的判定定理
专题:函数的性质及应用
分析:因为函数f(x)为分段函数,函数y=f(f(x))+1为复合函数,故需要分类讨论,确定函数y=f(f(x))+1的解析式,从而可得函数y=f(f(x))+1的零点个数
解答: 解:分四种情况讨论.
(1)x>1时,log2x>0,∴y=f(f(x))+1=log2(log2x)+1,此时的零点为
2

(2)0<x<1时,log2x<0,∴y=f(f(x))+1=alog2x+1,则a>0时,有一个零点,a<0时,没有零点,
(3)若x<0,ax+1≤0时,y=f(f(x))+1=a2x+a+1,则a>0时,有一个零点,a<0时,没有零点,
(4)若x<0,ax+1>0时,y=f(f(x))+1=log2(ax+1)+1,则a>0时,有一个零点,a<0时,没有零点,
综上可知,当a>0时,有4个零点;当a<0时,有1个零点
故选:C.
点评:本题考查分段函数,考查复合函数的零点,解题的关键是分类讨论确定函数y=f(f(x))+1的解析式
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网