题目内容
15.已知可行域$\left\{\begin{array}{l}x≥0\\ 3x+y≤4\\ x+3y≥4\end{array}\right.$,若直线$y=kx+\frac{4}{3}$将可行域所表示的图形的面积平分,则k的值为$\frac{7}{3}$.分析 作出不等式组对应的区域,如图的阴影部分,直线$y=kx+\frac{4}{3}$过定点B(0,$\frac{4}{3}$),当其过对边中点M时,直线就将阴影部分一分为二,故问题转化为求中点P的坐标,于是先求出两点A,B,C的坐标,再由中点坐标公式求P的坐标,再由斜率的两点式求斜率即可.
解答
解:易知直线y=kx+$\frac{4}{3}$过点B(0,$\frac{4}{3}$),作出可行域$\left\{\begin{array}{l}x≥0\\ 3x+y≤4\\ x+3y≥4\end{array}\right.$,由图可知,当直线经过线段AC的中点M时,平分可行域△ABC的面积,由解得点C(0,4),A(0,$\frac{4}{3}$),由$\left\{\begin{array}{l}{3x+y=4}\\{x+3y=4}\end{array}\right.$,可得B(1,1),
从而P为BC的中点($\frac{1}{2}$,$\frac{5}{2}$),于是k=kAP=$\frac{\frac{5}{2}-\frac{4}{3}}{\frac{1}{2}-0}$=$\frac{7}{3}$.
故答案为:$\frac{7}{3}$.
点评 本题考查线性规划,考查不等式与区域的关系,中点坐标公式,训练依据图形进行分析转化的能力,数形结合综合性较强.
练习册系列答案
相关题目
6.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:
(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.
①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.
| 产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
| 有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.
①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.
3.已知抛物线的顶点在原点,焦点在x轴上,△ABC三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在的直线方程为4x+y-20=0,则抛物线方程为( )
| A. | y2=16x | B. | y2=8x | C. | y2=-16x | D. | y2=-8x |
5.在△ABC中,已知a=2,b=2$\sqrt{2}$,A=$\frac{π}{6}$,则∠B=( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{4}$或$\frac{3}{4}$π | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |