题目内容
20.已知数列$\left\{{a_n}\right\},{a_1}=1,{a_{n+1}}=({1+\frac{1}{{{n^2}+n}}}){a_n}+\frac{1}{2^n}$,求证:(1)an≥2(n≥2);
(2)an≤e2(n≥1).
分析 (1)首先利用作差法验证数列是递增数列,求出a2=2,则答案得证;
(2)利用不等式1+x<ex(x>0)进行证明,n=1,2时明显成立,当n≥3时由不等式1+x<ex(x>0)结合已知数列递推式通过放缩法证明.
解答 证明:(1)由${a_1}=1,{a_{n+1}}=({1+\frac{1}{{{n^2}+n}}}){a_n}+\frac{1}{2^n}$,得${a_2}=({1+\frac{1}{{{1^2}+1}}}){a_1}+\frac{1}{2}=2$.
则an>0,∴${a_{n+1}}-{a_n}=\frac{1}{{{n^2}+n}}{a_n}+\frac{1}{2^n}>0$,即数列{an}单调递增,
∴an≥a2=2(n≥2);
(2)利用不等式1+x<ex(x>0)进行证明:
①当n=1,2时,${a}_{n}≤{e}^{2}$显然成立;
②当n≥3时,$\frac{{a}_{n}}{{a}_{n-1}}=1+\frac{1}{(n-1)n}+\frac{1}{{2}^{n-1}{a}_{n-1}}$$≤1+\frac{1}{(n-1)n}+\frac{1}{{2}^{n}}<{e}^{\frac{1}{(n-1)n}+\frac{1}{{2}^{n}}}$,
$\frac{{a}_{n-1}}{{a}_{n-2}}=1+\frac{1}{(n-2)(n-1)}+\frac{1}{{2}^{n-2}{a}_{n-2}}$$≤1+\frac{1}{(n-2)(n-1)}+\frac{1}{{2}^{n-1}}$$<{e}^{\frac{1}{(n-2)(n-1)}+\frac{1}{{2}^{n-1}}}$,
…
$\frac{{a}_{3}}{{a}_{2}}=1+\frac{1}{2×3}+\frac{1}{{2}^{2}{a}_{2}}≤1+\frac{1}{2×3}+\frac{1}{{2}^{3}}$$<{e}^{\frac{1}{2×3}+\frac{1}{{2}^{3}}}$,
$\frac{{a}_{2}}{{a}_{1}}=1+\frac{1}{1×2}+\frac{1}{2{a}_{1}}$$≤1+\frac{1}{1×2}+\frac{1}{2}$$<{e}^{\frac{1}{1×2}+\frac{1}{2}}$,
将以上各式相乘得${a}_{n}<{e}^{\frac{1}{1×2}+\frac{1}{2}+\frac{1}{2×3}+\frac{1}{{2}^{3}}+…+\frac{1}{(n-1)n}+\frac{1}{{2}^{n}}}$
=${e}^{\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{(n-1)n}+\frac{1}{2}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}}$=${e}^{1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n-1}-\frac{1}{n}+\frac{1}{2}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}}$
=${e}^{1-\frac{1}{n}+\frac{1}{2}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}}$$<{e}^{1+\frac{1}{2}+\frac{1}{{2}^{3}}÷(1-\frac{1}{2})}$=${e}^{1+\frac{1}{2}+\frac{1}{4}}={e}^{2}$.
综上得原不等式成立.
点评 本题考查数列递推式,训练了裂项相消法求数列的前n项和,考查了放缩法证明数列不等式,难度较大.
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
| A. | a12 | B. | a13 | C. | a14 | D. | a15 | ||||
| E. | a16 |