题目内容

4.已知抛物线C:y2=4x的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的斜率为(  )
A.$±\frac{{\sqrt{2}}}{2}$B.±1C.$±\frac{{\sqrt{6}}}{3}$D.$±\frac{{\sqrt{6}}}{2}$

分析 求得焦点坐标,由x0+$\frac{p}{2}$=5,求得x0=4,作差$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{2}{{y}_{0}}$,由$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{y}_{0}-0}{{x}_{0}-1}$.联立即可求得y0,即可求得直线l的斜率.

解答 解:物线C:y2=4x的焦点F(1,0),
设A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,
由弦AB的中点M到抛物线C的准线的距离为5,即x0+$\frac{p}{2}$=5,则x0=4,
$\left\{\begin{array}{l}{{y}_{1}^{2}=4{x}_{1}}\\{{y}_{1}^{2}=4{x}_{2}}\end{array}\right.$,两式相减得:(y1+y2)(y1-y2)=4(x1-x2),
则$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{2}{{y}_{0}}$,即k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{y}_{0}-0}{{x}_{0}-1}$.
则$\frac{2}{{y}_{0}}$=$\frac{{y}_{0}-0}{{x}_{0}-1}$.$\frac{2}{{y}_{0}}$=$\frac{{y}_{0}}{4-1}$,则y0=±$\sqrt{6}$,
∴直线l的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{y}_{0}-0}{{x}_{0}-1}$=±$\frac{\sqrt{6}}{3}$,
故选C.

点评 本题考查了直线与抛物线相交弦长问题、中点坐标公式与斜率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网