题目内容

经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:
x 15 16 18 19 22
y 102 98 115 115 120
由表中样本数据求得回归方程为
y
=bx+a,且点(a,b)在直线x+18y=m上,则m=
 
考点:线性回归方程
专题:计算题,概率与统计
分析:由样本数据可得,
.
x
.
y
,利用公式,求出b,a,根据点(a,b)在直线x+18y=m上,即可求出m的值.
解答: 解:由题意,
.
x
=
1
5
(15+16+18+19+22)=18,
.
y
=
1
5
(102+98+115+115+120)=110,
5
i=1
xiyi
=9993,5
.
x
.
y
=9900,
5
i=1
xi2
=1650,n(
.
x
)2
=5•324=1620,
∴b=
9993-9900
1650-1620
=3.1,
∴a=110-3.1×18=54.2,
∵点(a,b)在直线x+18y=m上,
∴m=54.2+18×3.1=110.
故答案为:110.
点评:本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网