题目内容
求数列{an}的前n项和Sn满足Sn=2an-n,设bn=
,记数列{bn}的前n和为Tn,证明-
<Tn-
<0.
| an |
| an+1 |
| 1 |
| 3 |
| n |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:由数列递推式得到数列{an+1}是首项为2,公比为2的等比数列,求出其通项公式得到数列{an}的通项公式,代入bn=
后求出bn-
=
-
=
,然后利用放缩法证明数列不等式.
| an |
| an+1 |
| 1 |
| 2 |
| 2n-1 |
| 2n+1-1 |
| 1 |
| 2 |
| -1 |
| 2n+2-2 |
解答:
证明:由Sn=2an-n,得a1=S1=2a1-1,即a1=1;
当n≥2时,由Sn=2an-n,得Sn-1=2an-1-(n-1),
两式作差得:an=2an-2an-1-1,即an=2an-1+1.
∴an+1=2(an-1+1),
∵a1+1=2≠0,
∴数列{an+1}是首项为2,公比为2的等比数列,
则an+1=2•2n-1=2n,an=2n-1.
则bn=
=
.
则bn-
=
-
=
.
∴Tn-
=-(
+
+…+
+
)<0,
∴Tn-
<0;
∴
=
<
.
则Tn-
>-
(
+
+…+
)=-
+
>-
.
∴-
<Tn-
<0.
当n≥2时,由Sn=2an-n,得Sn-1=2an-1-(n-1),
两式作差得:an=2an-2an-1-1,即an=2an-1+1.
∴an+1=2(an-1+1),
∵a1+1=2≠0,
∴数列{an+1}是首项为2,公比为2的等比数列,
则an+1=2•2n-1=2n,an=2n-1.
则bn=
| an |
| an+1 |
| 2n-1 |
| 2n+1-1 |
则bn-
| 1 |
| 2 |
| 2n-1 |
| 2n+1-1 |
| 1 |
| 2 |
| -1 |
| 2n+2-2 |
∴Tn-
| n |
| 2 |
| 1 |
| 23-2 |
| 1 |
| 24-2 |
| 1 |
| 2n+1-2 |
| 1 |
| 2n+2-2 |
∴Tn-
| n |
| 2 |
∴
| 1 |
| 2n+2-2 |
| 1 |
| 2n-2+3•2n |
| 1 |
| 3•2n |
则Tn-
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 3 |
| 1 |
| 3•2n |
| 1 |
| 3 |
∴-
| 1 |
| 3 |
| n |
| 2 |
点评:本题考查了数列递推式,考查了等比关系的确定,训练了放缩法证明数列不等式,属难题.
练习册系列答案
相关题目