题目内容

10.已知等差数列{an}满足a3=7,a5+a7=26,其前n项和为Sn
(1)求{an}的通项公式及Sn
(2)令${b_n}=\frac{1}{{{S_n}-n}}(n∈{N^*})$,求数列{bn}的前n项和Tn,并求$\lim_{n→∞}{T_n}$的值.

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)利用“裂项求和”方法即可得出.

解答 解:(1)设等差数列{an}的公差为d,
由a5+a7=26,得a6=13,
又a6-a3=3d=6,解得d=2.
所以an=a3+(n-3)d=7+2(n-3)=2n+1.
所以${S_n}=\frac{{{a_1}+{a_n}}}{2}×n=\frac{3+2n+1}{2}×n={n^2}+2n$.
(2)由${b_n}=\frac{1}{{{S_n}-n}}$,得${b_n}=\frac{1}{{{n^2}+n}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
设{bn}的前n项和为Tn
则${T_n}=({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+…+({\frac{1}{n}-\frac{1}{n+1}})$=$1-\frac{1}{n+1}$,
$\lim_{n→∞}{T_n}=1$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网