题目内容
8.在△ABC中,内角A、B、C所对的边为a、b、c,B=60°,a=4,其面积S=20$\sqrt{3}$,则c=( )| A. | 15 | B. | 16 | C. | 20 | D. | 4$\sqrt{21}$ |
分析 利用三角形的面积公式S=$\frac{1}{2}$acsinB来解答.
解答 解:由题意得:$\frac{1}{2}$acsinB=20$\sqrt{3}$,即$\frac{1}{2}$×4c×sin60°=20$\sqrt{3}$,
解得c=20.
故选:C.
点评 本题考查余弦定理及三角形的面积公式,属基础题,熟记相关公式并灵活运用是解决该类问题的基础.
练习册系列答案
相关题目
19.某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程$\widehaty=\widehatbx+\widehata$;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.
| 连锁店 | A店 | B店 | C店 | |||
| 售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
| 销售量y(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.
3.已知变量x,y之间的线性回归方程为$\widehat{y}$=-0.7x+10.3,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是( )
| x | 6 | 8 | 10 | 12 |
| y | 6 | m | 3 | 2 |
| A. | 变量x,y之间呈现负相关关系 | |
| B. | m=4 | |
| C. | 可以预测,当x=11时,y=2.6 | |
| D. | 由表格数据知,该回归直线必过点(9,4) |
17.已知x,y的取值如表所示:从散点图分析,x与y线性相关,且$\widehat{y}$=kx+1,则k=0.8.
| x | 0 | 1 | 3 | 4 |
| y | 0.9 | 1.9 | 3.2 | 4.4 |