题目内容
19.某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:| 连锁店 | A店 | B店 | C店 | |||
| 售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
| 销售量y(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.
分析 (1)先求出三家连锁店的平均年售价和平均销量,根据回归系数公式计算回归系数,得出回归方程.
(2)设定价为x,得出利润关于x的函数f(x),利用二次函数的性质求出f(x)的极大值点.
解答 解:(1)三家连锁店的平均售价和销售量分别为A(83,83),B(85,80),C(87,74).
∴$\overline{x}$=$\frac{83+85+87}{3}$=85,$\overline{y}$=$\frac{83+80+74}{3}$=79.
∴$\stackrel{∧}{b}$=$\frac{-2×4+0×1+2×(-5)}{4+0+4}$=-2.25,$\stackrel{∧}{a}$=79-(-2.25)×85=270.25.
∴售价与销量的回归直线方程为$\stackrel{∧}{y}$=-2.25x+270.25.
(2)设定价为x元,则利润为f(x)=(x-40)(-2.25x+270.25)=-2.25x2+360.25x-10810.
∴当x=$\frac{360.25}{4.5}$≈80时,f(x)取得最大值,即利润最大.
点评 本题考查了线性回归方程的求解,二次函数的性质,属于中档题.
练习册系列答案
相关题目
7.向量$\overrightarrow a=({2,-1,3})$,向量$\overrightarrow b=({4,-2,k})$,且满足向量$\overrightarrow a⊥\overrightarrow b$,则k等于( )
| A. | 6 | B. | -6 | C. | $-\frac{10}{3}$ | D. | -2 |
14.已知△ABC中,A=45°,a=2,b=$\sqrt{2}$,那么∠B为( )
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
11.某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:
(Ⅰ)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;
(Ⅱ)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(Ⅱ)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.
8.在△ABC中,内角A、B、C所对的边为a、b、c,B=60°,a=4,其面积S=20$\sqrt{3}$,则c=( )
| A. | 15 | B. | 16 | C. | 20 | D. | 4$\sqrt{21}$ |