题目内容
18.数列{an}的前n项和Sn=n2+2n-1,则a1+a3+a5+…+a99=5049.分析 由Sn=n2+2n-1分类讨论求数列的通项公式,从而求和.
解答 解:当n=1时,a1=S1=12+2-1=2,
当n≥2时,an=Sn-Sn-1
=n2+2n-1-[(n-1)2+2(n-1)-1]
=2n+1;
故an=$\left\{\begin{array}{l}{2,n=1}\\{2n+1,n≥2}\end{array}\right.$,
故a1+a3+a5+…+a99
=2+$\frac{7+2×99+1}{2}$×49
=5049,
故答案为:5049.
点评 本题考查了数列的前n项和与通项公式的求法,同时考查了分类讨论的思想.
练习册系列答案
相关题目
8.在△ABC中,内角A、B、C所对的边为a、b、c,B=60°,a=4,其面积S=20$\sqrt{3}$,则c=( )
| A. | 15 | B. | 16 | C. | 20 | D. | 4$\sqrt{21}$ |
13.抛物线C:y2=4x的焦点为F,斜率为k的直线l与抛物线C交于M,N两点,若线段MN的垂直平分线与x轴交点的横坐标为a(a>0),n=|MF|+|NF|,则2a-n等于( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
7.已知函数y=f(log2x)的定义域为[1,2],那么函数y=f(x)的定义域为( )
| A. | [2,4] | B. | [1,2] | C. | [0,1] | D. | (0,1] |