题目内容

某校举办一场篮球投篮选拔比赛,比赛的规则如下:每个选手先后在二分区、三分区和中场跳球区三个位置各投一球,只有当前一次球投进后才能投下一次,三次全投进就算胜出,否则即被淘汰.已知某选手在二分区投中球的概率为
4
5
,在三分区投中球的概率为
3
5
,在中场跳球区投中球的概率为
2
5
,且在各位置投球是否投进互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在比赛中投球的个数记为ξ,求随机变量ξ的分布列与数学期望Eξ.(注:本小题结果可用分数表示)
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)记“该选手能投进第i个球”的事件为Ai(i=1,2,3),则P(A1)=
4
5
,P(A2)=
3
5
,P(A3)=
2
5
,由此能求了该选手被淘汰的概率.
(Ⅱ)ξ的可能值为1,2,3,分别求出相应的概率,由此能求出随机变量ξ的分布列与数学期望Eξ.
解答: 解:(Ⅰ)记“该选手能投进第i个球”的事件为Ai(i=1,2,3),
则P(A1)=
4
5
,P(A2)=
3
5
,P(A3)=
2
5

∴该选手被淘汰的概率
P=P(
.
A1
+A1
.
A2
+A1A2
.
A3

=
1
5
+
4
5
×
2
5
+
4
5
×
3
5
×
3
5
=
101
125

(Ⅱ)ξ的可能值为1,2,3,
P(ξ=1)=P(
.
A1
)=
1
5

P(ξ=2)=P(A1
.
A2
)=
4
5
×
2
5
=
8
25

P(ξ=3)=P(A1A2)=
4
5
×
3
5
=
12
25

∴ξ的分布列为
ξ123
P
1
5
8
25
12
25
∴Eξ=1×
1
5
+2×
8
25
+3×
12
25
=
57
25
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期限,是中档题,在历年高考中考都是必考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网