题目内容

1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$则sin2x等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

分析 利用两角和与差的余弦、诱导公式和二倍角公式对已知等式进行化简.

解答 解:$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$,
cos($\frac{4π}{5}$-$\frac{7π}{15}$)=$\frac{2}{3}$-sinxcosx,
cos$\frac{π}{3}$=$\frac{2}{3}$-$\frac{1}{2}$sin2x,
$\frac{1}{2}$=$\frac{2}{3}$-$\frac{1}{2}$sin2x,
sin2x=$\frac{1}{3}$.
故选:A.

点评 本题考查了三角函数的化简求值,注意两角和与差的余弦、诱导公式的合理应用,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网