题目内容
11.已知a、b 是实数,则“a>b”是“a2>b2”的( )| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 非充分非必要条件 |
分析 根据充分必要条件的定义判断即可.
解答 解:由a>b推不出a2>b2,比如a=0,b=-2,不是充分条件,
由a2>b2推不出a>b,比如a=-2,b=0,不是必要条件,
故选:D.
点评 本题考查了充分必要条件,考查不等式问题,是一道基础题.
练习册系列答案
相关题目
1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$则sin2x等于( )
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{12}$ | D. | -$\frac{1}{12}$ |
19.已知{an}是等差数列,a3+a11=40,则a6-a7+a8等于( )
| A. | 20 | B. | 48 | C. | 60 | D. | 72 |
6.已知函数f(x)=2sinxcosx+cos2x,则下列说法正确的是( )
| A. | f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$的图象 | |
| B. | 若f(x1)=f(x2),则x1-x2=kπ,k∈Z | |
| C. | f(x)的图象关于直线$x=\frac{5}{8}π$对称 | |
| D. | f(x)的图象关于点$(-\frac{3}{8}π,0)$对称 |
1.直线x+2y-1=0在y轴上的截距为( )
| A. | -1 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | 1 |