题目内容

12.命题“?x∈R,(a-2)x2+2(a-2)x-4≥0”是假命题,则实数a的取值范围是(  )
A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)

分析 若命题“?x∈R,(a-2)x2+2(a-2)x-4≥0”是假命题,则命题“?x∈R,(a-2)x2+2(a-2)x-4<0”是真命题,故a-2=0,或$\left\{\begin{array}{l}a-2<0\\ 4(a-2)^{2}+16(a-2)<0\end{array}\right.$,解得答案.

解答 解:若命题“?x∈R,(a-2)x2+2(a-2)x-4≥0”是假命题,
则命题“?x∈R,(a-2)x2+2(a-2)x-4<0”是真命题,
故a-2=0,或$\left\{\begin{array}{l}a-2<0\\ 4(a-2)^{2}+16(a-2)<0\end{array}\right.$,
解得:a∈(-2,2],
故选:B

点评 本题以命题的真假判断与应用为载体,考查了特称命题,恒成立问题,二次函数的图象和性质,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网