题目内容
13.下列各组函数中,表示同一函数的是( )| A. | f(x)=2log2x,$g(x)={log_2}{x^2}$ | B. | f(x)=|x|,$g(x)={(\sqrt{x})^2}$ | ||
| C. | f(x)=x,$g(x)=lo{g_2}{2^x}$ | D. | f(x)=x+1,$g(x)=\frac{x^2}{x}-1$ |
分析 分别判断两个函数的定义域和对应法则是否一致即可.
解答 解:A、B中,函数的定义域不相同,不是同一函数,
D中,函数的定义域不相同,解析式不相同,不是同一函数,
C中函数的定义域相同,解析式相同,是同一函数,
故选C.,
点评 本题主要考查判断函数是否为同一函数,判断的依据主要是判断两个函数的定义域和定义法则是否一致即可.
练习册系列答案
相关题目
17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F是抛物线y2=8x焦点,两曲线的一个公共点为P,且|PF|=5,则该双曲线的离心率为( )
| A. | 2 | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{2\sqrt{3}}{3}$ |
1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点分别为F1、F2,如果$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,则椭圆离心率的取值范围是( )
| A. | (0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,1) | C. | (0,$\frac{\sqrt{2}}{2}$] | D. | [$\frac{\sqrt{2}}{2}$,1) |
18.若以双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}=1({a>0})$的左、右焦点和点$({2,\sqrt{5}})$为顶点的三角形为直角三角形,则该双曲线的焦距为( )
| A. | $2\sqrt{5}$ | B. | 6 | C. | 8 | D. | 10 |
2.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,则f($\frac{3}{2}$)=( )
| A. | $\sqrt{e}$ | B. | $\sqrt{e^3}$ | C. | $\root{3}{e^2}$ | D. | $\root{3}{e}$ |
3.微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都$\frac{2}{3}$是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
| 青年人 | 中年人 | 合计 | |
| 经常使用微信 | 80 | 40 | 120 |
| 不经常使用微信 | 55 | 5 | 60 |
| 合计 | 135 | 45 | 180 |
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
| p(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |