ÌâÄ¿ÄÚÈÝ
3£®Î¢ÐÅÊÇÏÖ´úÉú»îÖнøÐÐÐÅÏ¢½»Á÷µÄÖØÒª¹¤¾ß£®¾Ýͳ¼Æ£¬Ä³¹«Ë¾200ÃûÔ±¹¤ÖÐ90%µÄÈËʹÓÃ΢ÐÅ£¬ÆäÖÐÿÌìʹÓÃ΢ÐÅʱ¼äÔÚһСʱÒÔÄÚµÄÓÐ60ÈË£¬ÆäÓàµÄÔ±¹¤Ã¿ÌìʹÓÃ΢ÐÅʱ¼äÔÚһСʱÒÔÉÏ£¬Èô½«Ô±¹¤·Ö³ÉÇàÄ꣨ÄêÁäСÓÚ40Ë꣩ºÍÖÐÄ꣨ÄêÁ䲻СÓÚ40Ë꣩Á½¸ö½×¶Î£¬ÄÇôʹÓÃ΢ÐŵÄÈËÖÐ75%ÊÇÇàÄêÈË£®Èô¹æ¶¨£ºÃ¿ÌìʹÓÃ΢ÐÅʱ¼äÔÚһСʱÒÔÉÏΪ¾³£Ê¹ÓÃ΢ÐÅ£¬ÄÇô¾³£Ê¹ÓÃ΢ÐŵÄÔ±¹¤Öж¼$\frac{2}{3}$ÊÇÇàÄêÈË£®£¨1£©ÈôÒªµ÷²é¸Ã¹«Ë¾Ê¹ÓÃ΢ÐŵÄÔ±¹¤¾³£Ê¹ÓÃ΢ÐÅÓëÄêÁäµÄ¹ØÏµ£¬Áгö²¢Íê³É2¡Á2ÁÐÁª±í£º
| ÇàÄêÈË | ÖÐÄêÈË | ºÏ¼Æ | |
| ¾³£Ê¹ÓÃ΢ÐÅ | 80 | 40 | 120 |
| ²»¾³£Ê¹ÓÃ΢ÐÅ | 55 | 5 | 60 |
| ºÏ¼Æ | 135 | 45 | 180 |
£¨3£©²ÉÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°¾³£Ê¹ÓÃ΢ÐÅ¡±µÄÈËÖгéÈ¡6ÈË£¬´ÓÕâ6ÈËÖÐÈÎÑ¡2ÈË£¬ÇóÑ¡³öµÄ2ÈË£¬¾ùÊÇÇàÄêÈ˵ĸÅÂÊ£®
¸½£º
| p£¨K2¡Ýk0£© | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨¢ñ£©ÓÉÒÑÖª¿ÉµÃ£¬¸Ã¹«Ë¾Ô±¹¤ÖÐʹÓÃ΢ÐŵÄÓÐ200¡Á90%=180ÈË£¬¿ÉµÃ2¡Á2ÁÐÁª±í£»
£¨2£©¸ù¾Ý2¡Á2ÁÐÁª±í£¬´úÈëÇóÁÙ½çÖµµÄ¹«Ê½£¬Çó³ö¹Û²âÖµ£¬ÀûÓù۲âֵͬÁÙ½çÖµ±í½øÐбȽϣ¬K2¡Ö13.333£¾10.828£¬ÓÐ99.9%°ÑÎÕÈÏΪ¡°¾³£Ê¹ÓÃ΢ÐÅÄêÁäÓйء±£»
£¨3£©´Ó¡°¾³£Ê¹ÓÃ΢ÐŵÄÈËÖгéÈ¡6ÈË£¬ÆäÖбíÄêÈËÓÐ4ÈË£¬ÖÐÄêÈË2ÈË£®ÁгöËùÓпÉÄܵÄʼþ¼°Ñ¡³ö2ÔÚÈ˾ùÊÇÇàÄêÈË»ù±¾Ê¼þ£¬¸ù¾Ý¹Åµä¸ÅÐ͹«Ê½ÇóµÃÑ¡³ö2È˾ùÊÇÇàÄêÈ˵ĸÅÂÊ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª¿ÉµÃ£¬¸Ã¹«Ë¾Ô±¹¤ÖÐʹÓÃ΢ÐŵÄÓÐ200¡Á90%=180ÈË£¬
¾³£Ê¹ÓÃ΢ÐŵÄÓÐ180-60=120ÈË£¬ÆäÖÐÇàÄêÈËÓÐ$120¡Á\frac{2}{3}=80$ÈË£¬Ê¹ÓÃ΢ÐŵÄÈËÖÐÇàÄêÈËÓÐ180¡Á75%=135ÈË£®
ËùÒÔ2¡Á2ÁÐÁª±íΪ£º¡£¨4·Ö£©
| ÇàÄêÈË | ÖÐÄêÈË | ºÏ¼Æ | |
| ¾³£Ê¹ÓÃ΢ÐÅ | 80 | 40 | 120 |
| ²»¾³£Ê¹ÓÃ΢ÐÅ | 55 | 5 | 60 |
| ºÏ¼Æ | 135 | 45 | 180 |
ËùÒÔÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°¾³£Ê¹ÓÃ΢ÐÅÓëÄêÁäÓйء±£®¡£¨8·Ö£©
£¨¢ó£©´Ó¡°¾³£Ê¹ÓÃ΢ÐÅ¡±µÄÈËÖгéÈ¡6ÈË£¬ÆäÖУ¬ÇàÄêÈËÓÐ$\frac{80}{120}¡Á6=4$ÈË£¬ÖÐÄêÈËÓÐ$\frac{40}{120}¡Á6=2$£¬
¼Ç4ÃûÇàÄêÈ˵ıàºÅ·Ö±ðΪ1£¬2£¬3£¬4£¬¼Ç2ÃûÖÐÄêÈ˵ıàºÅ·Ö±ðΪ5£¬6£¬
Ôò´ÓÕâ6ÈËÖÐÈÎÑ¡2È˵Ļù±¾Ê¼þÓУ¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨1£¬5£©£¬£¨1£¬6£©£¬£¨2£¬3£©£¬£¨2£¬4£©£¬£¨2£¬5£©£¬£¨2£¬6£©£¬£¨3£¬4£©£¬£¨3£¬5£©£¬£¨3£¬6£©£¬£¨4£¬5£©£¬£¨4£¬6£©£¬£¨5£¬6£©£¬¹²15¸ö£¬ÆäÖÐÑ¡³öµÄ2È˾ùÊÇÇàÄêÈ˵Ļù±¾Ê¼þÓУ¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨2£¬3£©£¬£¨2£¬4£©£¬£¨3£¬4£©£¬¹²6¸ö£¬¹ÊËùÇóʼþµÄ¸ÅÂÊΪ$P=\frac{6}{15}=\frac{2}{5}$£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓ㬿¼²éÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÏÂÁи÷×麯ÊýÖУ¬±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | f£¨x£©=2log2x£¬$g£¨x£©={log_2}{x^2}$ | B£® | f£¨x£©=|x|£¬$g£¨x£©={£¨\sqrt{x}£©^2}$ | ||
| C£® | f£¨x£©=x£¬$g£¨x£©=lo{g_2}{2^x}$ | D£® | f£¨x£©=x+1£¬$g£¨x£©=\frac{x^2}{x}-1$ |
14£®ÒÑÖªº¯Êýy=f£¨x+1£©µÄͼÏó¹ØÓÚÖ±Ïßx=-1¶Ô³Æ£¬ÇÒÂú×ãf£¨x£©+f¡ä£¨x£©=2ex£¬Èôa=f£¨-3£©£¬b=f£¨ln¦Ð£©£¬c=f£¨|sinx|£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | a£¾b£¾c | B£® | b£¾a£¾c | C£® | c£¾a£¾b | D£® | a£¾c£¾b |
18£®¡¶¾ÅÕÂËãÊõ¡·¡°Öñ¾Å½Ú¡±ÎÊÌ⣺ÏÖÓÐÒ»¸ù¾Å½ÚµÄÖñ×Ó£¬×ÔÉ϶øÏ¸÷½ÚµÄÈÝ»ý³ÉµÈ²îÊýÁУ¬ÉÏÃæ3½ÚµÄÈÝ»ý¹²9Éý£¬ÏÂÃæ3½ÚµÄÈÝ»ý¹²45Éý£¬ÔòµÚÎå½ÚµÄÈÝ»ýΪ£¨¡¡¡¡£©
| A£® | 7Éý | B£® | 8Éý | C£® | 9Éý | D£® | 11Éý |
8£®ÒÑÖª¦ÈΪÈñ½Ç£¬ÇÒcos£¨¦È+$\frac{¦Ð}{12}$£©=$\frac{\sqrt{3}}{3}$£¬Ôòcos£¨$\frac{5¦Ð}{12}$-¦È£©=£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{\sqrt{6}}{3}$ | D£® | -$\frac{\sqrt{6}}{3}$ |
12£®Ë«ÇúÏß$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1£¨p£¾0£©µÄ×ó½¹µãÔÚÅ×ÎïÏßy2=2pxµÄ×¼ÏßÉÏ£¬Ôòp=£¨¡¡¡¡£©
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{2}$ | C£® | 2 | D£® | 4 |