题目内容
8.(1)设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.求A∪B,∁U(A∩B);(2)化简求值:$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2.
分析 (1)先分别求出集合A,B,由此能求出A∪B,A∩B,∁U(A∩B).
(2)利用有理数指数幂性质及运算法则求解.
解答 解:(1)全集U=R,集合A={x|-1≤x<3},
B={x|2x-4≥x-2}={x|x≥2}.
∴A∪B={x|x≥-1},A∩B={x|2≤x<3},
∁U(A∩B)={x|x<2或x≥3}.
(2)$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2
=$\frac{5}{2}$+4+$\frac{100}{9}$×9
=$\frac{213}{2}$.
点评 本题考查并集、补集、交集、函数值的求法,是基础题,解题时要认真审题,注意并集、补集、交集、函数性质的合理运用.
练习册系列答案
相关题目
12.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量,成本和售价如下表:
分别用x,y表示黄瓜和韭菜的种植面积(单位:亩)
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别种植黄瓜和韭菜各对少亩能够使一年的种植总利润(总利润=总销售收入-总种植成本)最大?并求出此最大利润.
| 年产量/亩 | 年种植成本/亩 | 每吨售价 | |
| 黄瓜 | 4吨 | 1.2万元 | 0.55万元 |
| 韭菜 | 6吨 | 0.9万元 | 0.3万元 |
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别种植黄瓜和韭菜各对少亩能够使一年的种植总利润(总利润=总销售收入-总种植成本)最大?并求出此最大利润.
13.下列各组函数中,表示同一函数的是( )
| A. | f(x)=2log2x,$g(x)={log_2}{x^2}$ | B. | f(x)=|x|,$g(x)={(\sqrt{x})^2}$ | ||
| C. | f(x)=x,$g(x)=lo{g_2}{2^x}$ | D. | f(x)=x+1,$g(x)=\frac{x^2}{x}-1$ |