题目内容

6.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{3}$,1),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为(  )
A.30°B.45°C.60°D.90°

分析 利用两个向量数量积的定义求得cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$ 的值,可得θ的值.

解答 解:∵向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{3}$,1),设$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为θ,
则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{\sqrt{3}+\sqrt{3}}{2•2}$=$\frac{\sqrt{3}}{2}$,∴θ=30°,
故选:A.

点评 本题主要考查两个向量数量积的定义,根据三角函数的值求角,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网