题目内容

6.已知函数$f(x)=\left\{\begin{array}{l}(1-2a)x+3a,x<1\\ lnx,x≥1\end{array}\right.$的值域为R,那么a的取值范围是(  )
A.$[{-1,\frac{1}{2}})$B.$({-1,\frac{1}{2}})$C.(-∞,-1]D.$({-∞,\frac{1}{2}})$

分析 根据函数解析式得出x≥1,lnx≥0,由题意可得(1-2a)x+3a必须取到所有的负数,即满足:$\left\{\begin{array}{l}{1-2a>0}\\{1-2a+3a≥0}\end{array}\right.$,求解即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(1-2a)x+3a,x<1}\\{lnx,x≥1}\end{array}\right.$,
∴x≥1,lnx≥0,
∵值域为R,
∴(1-2a)x+3a必须取到所有的负数,
即满足:$\left\{\begin{array}{l}{1-2a>0}\\{1-2a+3a≥0}\end{array}\right.$,即为-1$≤a<\frac{1}{2}$,
即-1≤a<$\frac{1}{2}$,
故选:A.

点评 本题考查了函数的性质,运用单调性得出不等式组即可,难度不大,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网