题目内容
12.方程组$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-2=0}\end{array}\right.$的解集是①{1,0};②{x=1或y=0};③{(1,0)};④{(x,y)|x=1且y=0}.其中表示正确的是( )| A. | ①② | B. | ①③ | C. | ②③ | D. | ③④ |
分析 解方程组$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-2=0}\end{array}\right.$,得x=1,y=0,由此能求出方程组$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-2=0}\end{array}\right.$的解集.
解答 解:解方程组$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-2=0}\end{array}\right.$,
得x=1,y=0,
∴方程组$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-2=0}\end{array}\right.$的解集是{(1,0)}或{(x,y)|x=1且y=0}.
故表示正确的是③④.
故选:D.
点评 本题考查方程组的解集的表示方法,是基础题,解题时要认真审题,注意集合性质的合理运用.
练习册系列答案
相关题目
2.在△ABC中,若b=2,a=3,$cosC=-\frac{1}{4}$,则c=( )
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | 4 |
20.化简$\frac{1+sinθ-cosθ}{1+sinθ+cosθ}$+$\frac{1+sinθ+cosθ}{1+sinθ-cosθ}$为( )
| A. | $\frac{2}{sinθ}$ | B. | cos2θ | C. | $\frac{1}{cosθ}$ | D. | sin2θ |
7.若点M1(4,3)和M2(2,-1),点M分有向线段$\overline{{M}_{1}{M}_{2}}$的比λ=-2,则点M的坐标为( )
| A. | (0,-$\frac{5}{3}$) | B. | (6,7) | C. | (-2,-$\frac{7}{3}$) | D. | (0,-5) |
2.集合U={x∈Z|x(x-7)<0},A={1,4,5},B={2,3,5},则A∩(∁UB}=( )
| A. | {1,5} | B. | {1,4,6} | C. | {1,4} | D. | {1,4,5} |