题目内容

4.已知tan(π-α)=3,求:
(1)sinαcosα的值;
(2)$\frac{sin(π-α)+2cos(π+α)}{sin(\frac{π}{2}+α)-cos(\frac{π}{2}-α)}$的值.

分析 (1)由诱导公式可得tanα=-3,弦化切可得sinαcosα=$\frac{tanα}{1+ta{n}^{2}α}$,代值计算可得;
(2)由诱导公式和弦化切可得$\frac{sin(π-α)+2cos(π+α)}{sin(\frac{π}{2}+α)-cos(\frac{π}{2}-α)}$=$\frac{tanα-2}{1-tanα}$,代值计算可得.

解答 解:(1)∵tan(π-α)=3,∴由诱导公式可得tanα=-3,
∴sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{1+ta{n}^{2}α}$=-$\frac{3}{10}$;
(2)由诱导公式可得$\frac{sin(π-α)+2cos(π+α)}{sin(\frac{π}{2}+α)-cos(\frac{π}{2}-α)}$
=$\frac{sinα-2cosα}{cosα-sinα}$=$\frac{tanα-2}{1-tanα}$=$\frac{-3-2}{1-(-3)}$=-$\frac{5}{4}$

点评 本题考查同角三角函数基本关系,弦化切是解决问题的关键,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网