题目内容

如图,一条直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,F为抛物线的焦点,若△ABO与△AFO面积之和的最小值为50
5
,则抛物线的方程为(  )
A、y2=20x
B、y2=10x
C、y2=5x
D、y2=
5
2
x
考点:直线与圆锥曲线的综合问题,抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及x1•x2+y1•y2=0消元,最后将面积之和表示出来,探求最值问题.
解答: 解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),
x=ty+m代入y2=2px,可得y2-2pty-2pm=0,根据韦达定理有y1•y2=-2pm,
∵OA⊥OB,∴x1•x2+y1•y2=0,从而
1
4p2
(y1•y22+y1•y2=0,
∵点A,B位于x轴的两侧,
∴y1•y2=-4p2,故m=2p.
不妨令点A在x轴上方,则y1>0,
又F(
p
2
,0),
∴S△ABO+S△AFO=
1
2
×2p×(y1-y2)+
1
2
×
p
2
y1=
5p
4
y1+
4p3
y1
≥2
5
p2
当且仅当
5p
4
y1=
4p3
y1
时,取“=”号,
∴2
5
p2=50
5
,∴p=5
故抛物线的方程为:y2=10x.
故选:B.
点评:求解本题时,应考虑以下几个要点:
1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.
2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.
3、利用基本不等式时,应注意“一正,二定,三相等”.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网