题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=
3
x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程为(  )
A、
x2
36
-
y2
108
=1
B、
x2
108
-
y2
36
=1
C、
x2
9
-
y2
27
=1
D、
x2
27
-
y2
9
=1
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出抛物线的准线方程,即有c=12,再由渐近线方程,可得a,b的关系,由a,b,c的关系式,得到a,b的方程,解得a,b,即可得到双曲线的方程.
解答: 解:抛物线y2=48x的准线为x=-12,
则双曲线的c=12,
由一条渐近线方程是y=
3
x,
则b=
3
a,
由c2=a2+b2=144,可得a=6,b=6
3

则双曲线的方程为
x2
36
-
y2
108
=1.
故选A.
点评:本题考查抛物线和双曲线的方程、性质,考查渐近线方程和双曲线的a,b,c的关系,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网