题目内容

用1、5、9、13中任意一个数作分子,4、8、12、16中任意一个数作分母,可构成
 
个不同的分数?可构成
 
个不同的真分数?
考点:计数原理的应用
专题:排列组合
分析:用1、5、9、13中任意一个数作分子,4、8、12、16中任意一个数作分母,根据分步计数原理即可得到,
解答: 解:用1、5、9、13中任意一个数作分子,4、8、12、16中任意一个数作分母,有
C
1
4
C
1
4
=16个不同的分数,根据真分数的定义,每一个数字为一类,根据分类计数原理可得.

根据真分数的定义,
当分子为为1时,分母有4种选择,
当分子为为5时,分母有3种选择,
当分子为为9时,分母有2种选择,
当分子为为13时,分母有1种选择,
根据分类计数原理得真分数有,4+3+2+1=10种,
故答案为:16,10
点评:本题主要考查了分类和分步计数原理,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网