题目内容
函数f(x)=-x3+3x在区间(a2-12,a)上有最小值,则实数a的取值范围是( )
A、(-1,
| ||
| B、(-1,2) | ||
| C、(-1,2] | ||
| D、(1,4) |
考点:利用导数求闭区间上函数的最值
专题:函数的性质及应用
分析:求函数f(x)=-x3+3x的导数,研究其最小值取到的位置,由于函数在区间(a2-12,a)上有最小值,故最小值点的横坐标是集合(a2-12,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围
解答:
解:解:由题 f'(x)=3-3x2,
令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1
由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数,
∵f(0)=0,∴函数f(x)=-x3+3x在R上的图象大体如下:

故函数在x=-1处取到极小值-2,判断知此极小值必是区间(a2-12,a)上的最小值
∴a2-12<-1<a,解得-1<a<
,
又当x=2时,f(2)=-2,故有a≤2
综上知a∈(-1,2]
故选:C.
令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1
由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数,
∵f(0)=0,∴函数f(x)=-x3+3x在R上的图象大体如下:
故函数在x=-1处取到极小值-2,判断知此极小值必是区间(a2-12,a)上的最小值
∴a2-12<-1<a,解得-1<a<
| 11 |
又当x=2时,f(2)=-2,故有a≤2
综上知a∈(-1,2]
故选:C.
点评:本题考查用导数研究函数的最值,利用导数研究函数的最值是导数作为数学中工具的一个重要运用,要注意把握其作题步骤,求导,确定单调性,得出最值.
练习册系列答案
相关题目
拟定从甲地到乙地通话m分钟的话费符合f(m)=
,其中[m]表示不超过m的最大整数,从甲地到乙地通话5.2分钟的话费是( )
|
| A、4.77 | B、4.24 |
| C、3.71 | D、7.95 |