题目内容
8.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$.(1)证明:数列{a2n-$\frac{3}{2}$}是等比数列;
(2)求a2n及a2n-1.
分析 (1)设${b_n}={a_{2n}}-\frac{3}{2}$,可求得${b_1}={a_2}-\frac{3}{2}=({\frac{1}{3}{a_1}+1})-\frac{3}{2}=-\frac{1}{6}$,由已知可求得$\frac{{b}_{n+1}}{{b}_{n}}=\frac{\frac{1}{3}{a}_{2n}-\frac{1}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{1}{3}$,于是可证数列$\left\{{{a_{2n}}-\frac{3}{2}}\right\}$是以$-\frac{1}{6}$为首项,$\frac{1}{3}$为公比的等比数列;
(2)由(1)的${b_n}={a_{2n}}-\frac{3}{2}=-\frac{1}{6}•{(\frac{1}{3})^{n-1}}=-\frac{1}{2}•{(\frac{1}{3})^n}$,可求得a2n及a2n-1.
解答 (1)证明:设${b_n}={a_{2n}}-\frac{3}{2}$,则${b_1}={a_2}-\frac{3}{2}=({\frac{1}{3}{a_1}+1})-\frac{3}{2}=-\frac{1}{6}$,
因为$\frac{{{b_{n+1}}}}{b_n}=\frac{{{a_{2(n+1)}}-\frac{3}{2}}}{{{a_{2n}}-\frac{3}{2}}}=\frac{{\frac{1}{3}{a_{2n+1}}+(2n+1)-\frac{3}{2}}}{{{a_{2n}}-\frac{3}{2}}}=\frac{{\frac{1}{3}({a_{2n}}-6n)+(2n+1)-\frac{3}{2}}}{{{a_{2n}}-\frac{3}{2}}}=\frac{{\frac{1}{3}{a_{2n}}-\frac{1}{2}}}{{{a_{2n}}-\frac{3}{2}}}=\frac{1}{3}$,
所以数列$\left\{{{a_{2n}}-\frac{3}{2}}\right\}$是以$-\frac{1}{6}$为首项,$\frac{1}{3}$为公比的等比数列.----------(6分)
(2)解:由(1)的${b_n}={a_{2n}}-\frac{3}{2}=-\frac{1}{6}•{(\frac{1}{3})^{n-1}}=-\frac{1}{2}•{(\frac{1}{3})^n}$,即${a_{2n}}=-\frac{1}{2}•{({\frac{1}{3}})^n}+\frac{3}{2}$.
由${a_{2n}}=\frac{1}{3}{a_{2n-1}}+(2n-1)$得${a_{2n-1}}=3{a_{2n}}-3(2n-1)=-\frac{1}{2}•{({\frac{1}{3}})^{n-1}}-6n+\frac{15}{2}$.--------(12分)
点评 本题考查数列递推式的应用,考查等比关系的确定及其通项公式的运用,考查推理与运算能力,属于中档题.
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
| 非体育迷 | 体育迷 | 合计 | |
| 男 | |||
| 女 | 10 | 55 | |
| 合计 |
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体
育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
| A. | 0.85 | B. | 0.819 2 | C. | 0.8 | D. | 0.75 |
| A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
| A. | -1 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |