题目内容

如图,点P为圆O的弦AB上的一点,连接PO,过点P作PC⊥OP,且PC交圆O于C.若AP=4,PC=2,则PB=
 
考点:与圆有关的比例线段
专题:计算题,立体几何
分析:根据题设中的已知条件,利用相交弦定理,直接求解.
解答: 解:延长CP,交圆于D,则
∵AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,
∴PC=PD,
∴利用相交弦定理可得AP×PB=PC×PD=PC2
∵AP=4,PC=2,
∴PB=1.
故答案为:1
点评:本题考查与圆有关的比例线段的应用,是基础题.解题时要认真审题,注意相交弦定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网