题目内容

定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=
f(b)-f(a)
b-a
,f(x)=f′(x2)=
f(b)-f(a)
b-a
,则称数x1,x2为[a,b]上的“对望数”,函数f(x)为[a,b]上的“对望函数”.已知函数f(x)=
1
3
x3-x2+m是[0.m]上的“对望函数”,则实数m的取值范围是(  )
A、(1,
3
2
B、(
3
2
,3)
C、(1,2)∪(2,3)
D、(1,
3
2
)∪(
3
2
,3)
考点:导数的运算,二次函数的性质
专题:导数的综合应用
分析:由新定义可知f′(x1)=f′(x2)=
1
3
m2-m,即方程x2-2x=
1
3
m2-m在区间[0,m]有两个解,利用二次函数的性质可知实数m的取值范围
解答: 解:由题意可知,
在区间[0,m]存在x1,x2(0<x1<x2<a),
满足f′(x1)=
f(m)-f(0)
m-0
=
1
3
m2-m,
∵f(x)=x3-x2+a,
∴f′(x)=x2-2x,
∴方程x2-2x=
1
3
m2-m在区间[0,m]有两个解.
令g(x)=x2-2x-
1
3
m2+m,(0<x<m).
△=4+
4
3
m2-4m>0
g(0)=-
1
3
m2+m>0
g(m)=
2
3
m2-m>0
m>1

解得
3
2
<a<3,
∴实数a的取值范围是(
3
2
,3).
故选:B.
点评:本题是一道新定义函数问题,考查对函数性质的理解和应用.解题时首先求出函数f(x)的导函数,再将新定义函数的性质转化为导函数的性质,进而结合函数的零点情况确定参数m所满足的条件,解之即得所求.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网