题目内容

已知a>b>c,且3a+2b+c=0,求
c
a
的取值范围.
考点:不等关系与不等式
专题:不等式的解法及应用
分析:由于a>b>c,且3a+2b+c=0,可得a>0,c<0.于是3a+2c+c<0,3a+2a+c>0,即可得出.
解答: 解:∵a>b>c,且3a+2b+c=0,
∴a>0,c<0.
∴3a+2c+c<0,3a+2a+c>0,
解得-5<
c
a
-1.
c
a
的取值范围是(-5,-1).
点评:本题考查了不等式的基本性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网