题目内容

函数f(x)=ax3+x恰有三个单调区间,则a的取值范围是(  )
A、(-∞,-
1
3
]
B、[-
1
3
,+∞)
C、[0,+∞)
D、(-∞,0)
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:求出函数f(x)的导数,要使f(x)=ax3+x恰有三个单调区间,则f'(x)=0,有两个不等的实根,利用判别式△>0,进行求解即可.
解答: 解:由f(x)=ax3+x,得f′(x)=3ax2+1.
若a≥0,f′(x)≥0恒成立,此时f(x)在(-∞,+∞)上为增函数,函数只有一个增区间,不满足条件.
若a<0,由f′(x)>0,得-
-
1
3a
<x<
-
1
3a
,由f′(x)<0,得x>
-
1
3a
或x<-
-
1
3a

∴满足f(x)=ax3+x恰有三个单调区间的a的范围是(-∞,0);
故选:D
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网