题目内容
10.某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为8800元.分析 由题意知这8位员工月工资的中位数取最大值时,两人的月工资一个大于9100,另一个小于8500,由此能求出这8位员工月工资的中位数的最大值.
解答 解:由题意知这8位员工月工资的中位数取最大值时,
两人的月工资一个大于9100,另一个小于8500,
此时这8位员工月工资的中位数取最大值为:$\frac{8500+9100}{2}$=8800.
故答案为:8800.
点评 本题考查中位数的最大值的求法,是基础题,解题时要认真审题,注意中位数的定义的合理运用.
练习册系列答案
相关题目
1.已知f(x)=sin(ωx+θ),其中ω>0,θ∈(0,$\frac{π}{2}$),f(x1)=f(x2)=0,|x2-x1|min=$\frac{π}{2}$.f(x)=f($\frac{π}{3}-x$),将f(x)的图象向左平移$\frac{π}{6}$个单位得G(x),则G(x)的单调递减区间是( )
| A. | [kπ,kπ+$\frac{π}{2}$] | B. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$] | C. | [kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$] | D. | [kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$] |
15.设m,n是两条不同的直线,α,β是两个不同的平面,则m∥n 的一个充分不必要条件是( )
| A. | m⊥α,n⊥β,α∥β | B. | m∥α,n∥β,α∥β | C. | m∥α,n⊥β,α⊥β | D. | m⊥α,n⊥β,α⊥β |
2.命题“?x∈R,x2-x+1>0”的否定是( )
| A. | ?x∈R,x2-x+1≤0 | B. | ?x∈R,x2-x+1<0 | ||
| C. | ?x0∈R,x02-x0+1≤0 | D. | ?x0∈R,x02-x0+1<0 |
19.函数y=3sin(2x-$\frac{π}{3}$)的图象,经过下列哪个平移变换,可以得到函数y=3sin2x的图象( )
| A. | 向左平移$\frac{π}{6}$ | B. | 向右平移 $\frac{π}{6}$ | C. | 向左平移 $\frac{π}{3}$ | D. | 向右平移$\frac{π}{3}$ |
20.已知函数f(x)=cos(2x-φ)-$\sqrt{3}$sin(2x-φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后关于y轴对称,则f(x)在区间$[{-\frac{π}{2},0}]$上的最小值为( )
| A. | -1 | B. | $\sqrt{3}$ | C. | $-\sqrt{3}$ | D. | -2 |