题目内容

15.设向量$\overrightarrow a=(\sqrt{3}sinx,sinx)$,$\overrightarrow b=(cosx,sinx)$.
(1)若$|\overrightarrow a|=|\overrightarrow b|$且$x∈[{0,\frac{π}{2}}]$,求x的值;
(2)设函数$f(x)=\overrightarrow a•\overrightarrow b$,求f(x)的单调递增区间.

分析 (1)根据向量的模以及角的范围,即可求出.
(2)利用平面向量的数量积运算法则化简f(x)解析式,再利用两角和与差的正弦函数公式化为一个叫角的正弦函数根据正弦函数的递增区间求出x的范围,即为函数f(x)的递增区间.

解答 解:(1)∵$\overrightarrow a=(\sqrt{3}sinx,sinx)$,
∴$|\overrightarrow a|=2\sqrt{{{sin}^2}x}$,
∵$\overrightarrow{b}$=(cosx,sinx),
∴$|\overrightarrow b|=1$
由$|\overrightarrow a|=|\overrightarrow b|$得,${sin^2}x=\frac{1}{4}$,
又$x∈[{0,\frac{π}{2}}]$,
∴$sinx=\frac{1}{2}$,
∴$x=\frac{π}{6}$.
(2)∵$f(x)=\overrightarrow a•\overrightarrow b$=$\sqrt{3}$sinxcosx+sin2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$
令$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,
得$-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ(k∈Z)$,
∴f(x)的单调递增区间为$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}],k∈Z$.

点评 此题考查了两角和与差的正弦函数公式,平面向量的数量积运算,二倍角的余弦函数公式,正弦函数的单调性,熟练掌握公式是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网