题目内容
4.分析 根据正四棱柱ABCD-A1B1C1D1的侧棱D1D⊥底面ABCD,判断∠D1BD为直线BD1与底面ABCD所成的角,即可求出正四棱柱的高.
解答
解:∵正四棱柱ABCD-A1B1C1D1的侧棱D1D⊥底面ABCD,
∴∠D1BD为直线BD1与底面ABCD所成的角,
∴tan∠D1BD=$\frac{6}{7}$,
∵正四棱柱ABCD-A1B1C1D1中,底面ABCD的边长为3,
∴BD=7$\sqrt{2}$,
∴正四棱柱的高=7$\sqrt{2}×\frac{6}{7}$=$6\sqrt{2}$,
故答案为:$6\sqrt{2}$
点评 本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成的角.
练习册系列答案
相关题目
15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0处的导数值为( )
| A. | 0 | B. | 1002 | C. | 200 | D. | 100×99×…×2×1 |