题目内容
| y2 |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用双曲线的定义,可求出|F2A|=2,|F1F2|=4,进而有|F1A|+|F2A|=6,由此可求C2的离心率.
解答:
解:由题意知,|F1F2|=|F1A|=4,
∵|F1A|-|F2A|=2,
∴|F2A|=2,
∴|F1A|+|F2A|=6,
∵|F1F2|=4,
∴C2的离心率是
=
.
故选B.
∵|F1A|-|F2A|=2,
∴|F2A|=2,
∴|F1A|+|F2A|=6,
∵|F1F2|=4,
∴C2的离心率是
| 4 |
| 6 |
| 2 |
| 3 |
故选B.
点评:本题考查椭圆、双曲线的几何性质,考查学生的计算能力,正确运用椭圆、双曲线的几何性质是关键.
练习册系列答案
相关题目
在△ABC中,若lg(a+c)+lg(a-c)=lgb-lg
,则A=( )
| 1 |
| b+c |
| A、90° | B、60° |
| C、120° | D、150° |
动圆M过定点A且与定圆O相切,那么动圆M的圆心的轨迹是( )
| A、圆,或椭圆 |
| B、圆,或双曲线 |
| C、椭圆,或双曲线,或直线 |
| D、圆,或椭圆,或双曲线,或直线 |
直线(a-2)y=(3a-1)x-1恒过第( )
| A、一象限 | B、二象限 |
| C、三象限 | D、四象限 |
P是椭圆
+
=1上的一点,F1和F2是焦点,若∠F1PF2=60°,则△PF1F2的面积为( )
| x2 |
| 100 |
| y2 |
| 64 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|