题目内容

12.若变量x,y满足条件$\left\{\begin{array}{l}x+2y≥1\\ x+4y≤3\\ y≥0\end{array}\right.$则z=x+y的最大值是(  )
A.3B.2C.1D.0

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+2y≥1\\ x+4y≤3\\ y≥0\end{array}\right.$作出可行域如图,

由图可知,A(3,0).
化目标函数z=x+y为y=-x+z,由图可知,当直线y=-x+z过A时,直线在y轴上的截距最大,z有最大值为3.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网