题目内容
(Ⅰ)证明:A1C∥平面AB1E
(Ⅱ)证明:AB⊥A1C.
考点:直线与平面平行的判定,空间中直线与直线之间的位置关系
专题:证明题,空间位置关系与距离
分析:(Ⅰ)连结A1B,使A1B∩AB1=O,连结EO,由已知可证明EO∥A1C,又因为EO?平面AB1E,A1C?平面AB1E,即可判定A1C∥平面AB1E.
(Ⅱ)取AB中点F,连结CF,A1F,先证明A1F⊥AB,由CA=CB可证明CF⊥AB,由CF∩A1F=F,可证明AB⊥面CFA1,从而可证明AB⊥A1C.
(Ⅱ)取AB中点F,连结CF,A1F,先证明A1F⊥AB,由CA=CB可证明CF⊥AB,由CF∩A1F=F,可证明AB⊥面CFA1,从而可证明AB⊥A1C.
解答:
(本题满分12分)
证明:(Ⅰ)连结A1B,使A1B∩AB1=O,连结EO,
因为ABB1A1为平行四边形,所以O为A1B中点,
又因为E为BC中点,所以EO∥A1C,
又因为EO?平面AB1E,
A1C?平面AB1E,
所以,A1C∥平面AB1E;…(6分)
(Ⅱ)取AB中点F,连结CF,A1F,
∵AB=AA1,∠BAA1=60°,∴△BAA1是正三角形,
∴A1F⊥AB,∵CA=CB,∴CF⊥AB,
∵CF∩A1F=F,∴AB⊥面CFA1,
∴AB⊥A1C. …(12分)
证明:(Ⅰ)连结A1B,使A1B∩AB1=O,连结EO,
因为ABB1A1为平行四边形,所以O为A1B中点,
又因为E为BC中点,所以EO∥A1C,
又因为EO?平面AB1E,
A1C?平面AB1E,
所以,A1C∥平面AB1E;…(6分)
(Ⅱ)取AB中点F,连结CF,A1F,
∵AB=AA1,∠BAA1=60°,∴△BAA1是正三角形,
∴A1F⊥AB,∵CA=CB,∴CF⊥AB,
∵CF∩A1F=F,∴AB⊥面CFA1,
∴AB⊥A1C. …(12分)
点评:本题主要考查了直线与平面平行的判定,空间中直线与直线之间的位置关系,考查了空间想象能力,属于基本知识的考查.
练习册系列答案
相关题目