题目内容
已知数列{an}满足a1=1,a2=3,an+1=3an-2an-1(n∈N*,n≥2)
(Ⅰ)证明:数列{an+1-an}是等比数列,并求出{an}的通项公式
(Ⅱ)设数列{bn}满足bn=2log4(an+1)2,证明:对一切正整数n,有
+
+…+
<
.
(Ⅰ)证明:数列{an+1-an}是等比数列,并求出{an}的通项公式
(Ⅱ)设数列{bn}满足bn=2log4(an+1)2,证明:对一切正整数n,有
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由an+1=3an-2an-1得an+1-an=2(an-an-1),变形后可得{an+1-an}是以a2-a1为首项,2为公比的等比数列,然后利用累加法求得数列{an}的通项公式;
(Ⅱ)把{an}的通项公式代入bn=2log4(an+1)2 ,整理后利用裂项相消法求
+
+…+
的和,放缩后得答案.
(Ⅱ)把{an}的通项公式代入bn=2log4(an+1)2 ,整理后利用裂项相消法求
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
解答:
证明:(Ⅰ)∵an+1=3an-2an-1,
∴an+1-an=2(an-an-1),
∵a1=1,a2=3,
∴
=2(n∈N*,n≥2),
∴{an+1-an}是以a2-a1为首项,2为公比的等比数列,
则an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1=
=2n-1.
(Ⅱ)bn=2log4(an+1)2 =2log4(2n-1+1)2=2log422n=2n.
∴
=
=
=
(
-
).
则
+
+…+
=
(1-
+
-
+…+
-
)
(1-
)<
.
∴an+1-an=2(an-an-1),
∵a1=1,a2=3,
∴
| an+1-an |
| an-an-1 |
∴{an+1-an}是以a2-a1为首项,2为公比的等比数列,
则an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1=
| 1×(1-2n) |
| 1-2 |
(Ⅱ)bn=2log4(an+1)2 =2log4(2n-1+1)2=2log422n=2n.
∴
| 1 |
| bn2-1 |
| 1 |
| 4n2-1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
则
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2 |
点评:本题考查了数列递推式,考查了等比关系的确定,训练了裂项相消法求数列的和,考查了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目
定义在R上的奇函数f(x),当x≥0时,f(x)=
,则函数F(x)=f(x)-
的所有零点之和为( )
|
| 1 |
| π |
A、
| ||
B、
| ||
C、
| ||
D、
|