题目内容
15.已知两定点A(-2,0)和B(2,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为( )| A. | $\frac{2}{\sqrt{26}}$ | B. | $\frac{4}{\sqrt{26}}$ | C. | $\frac{2}{\sqrt{13}}$ | D. | $\frac{3}{\sqrt{13}}$ |
分析 由题意知,要使椭圆C的离心率取最大值,则a取最小值.即|PA|+|PB|取最小值.利用点的对称性求出|PA|+|PB|的最小值即可求解.
解答 解:由题意得,2c=|AB|=4,得c=2.
2a=|PA|+|PB|.
当a取最小值时,椭圆C的离心率有最大值.
设点A(-2,0)关于直线l:y=x+3的对称点为A′(x,y).
则$\left\{\begin{array}{l}{\frac{y}{x+2}=-1}\\{\frac{y}{2}=\frac{x-2}{2}+3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-3}\\{y=1}\end{array}\right.$.
∴A′(-3,1).
则|PA|+|PB|=|PA′|+|PB|≥|A′B|.
∴2a≥|A′B|=$\sqrt{26}$.
∴当a=$\frac{\sqrt{26}}{2}$时,椭圆有最大离心率.
此时,$\frac{c}{a}=\frac{4}{\sqrt{26}}$,
故选:B.
点评 本题考查椭圆的基本性质,动点到定点距离的最值等知识,属于中档题.
练习册系列答案
相关题目
5.若数列{an}满足a1=18,an+1=an-3,则数列{an}的前n项和数值最大时,n的值为( )
| A. | 6 | B. | 7或8 | C. | 6或7 | D. | 9 |
6.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的一条弦被点(1,1)平分,则此弦所在的直线方程是( )
| A. | 4x-9y+5=0 | B. | 9x-4y-5=0 | C. | 9x+4y-13=0 | D. | 4x+9y-13=0 |
3.已知命题p:?x0>0,x02-x0-2=0,则¬p为( )
| A. | ?x0≤0,x02-x0-2=0 | B. | ?x0>0,x02-x0-2=0 | ||
| C. | ?x≤0,x2-x-2≠0 | D. | ?x>0,x2-x-2≠0 |
10.已知a∈R,函数f(x)=x2(x-a).
(Ⅰ)若函数f(x)在区间(0,$\frac{2}{3}$)内是减函数,求实数a的取值范围;
(Ⅱ)当a=2时,求函数f(x)在区间[1,2]上的最小值.
(Ⅰ)若函数f(x)在区间(0,$\frac{2}{3}$)内是减函数,求实数a的取值范围;
(Ⅱ)当a=2时,求函数f(x)在区间[1,2]上的最小值.
20.设集合M={x|-1≤x≤2},N={x|log2x>0},则M∪N=( )
| A. | [-1,+∞) | B. | (1,+∞) | C. | (-1,2) | D. | (0,2) |
7.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上存在极值,则实数a的取值范围是( )
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-$\sqrt{3}$,$\sqrt{3}$) | C. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
5.设x1,x2,…,xn的平均数为$\overline{x}$,标准差是s,则另一组数2x1-3,2x2-3,…,2xn-3的平均数和标准差分别是( )
| A. | 2$\overline{x}$,4s | B. | 2$\overline{x}$-3,4s | C. | 2$\overline{x}$-3,2s | D. | 2$\overline{x}$,s |