题目内容
6.已知函数f(x)=3x+2sinx,x∈(-2,2),如果f(a-1)+f(1-2a)<0成立,则实数a的取值范围为$({0,\frac{3}{2}})$.分析 利用导数可判断函数的单调性,由定义可判断函数的奇偶性,根据函数的性质可去掉不等式中的符号“f”,转化为具体不等式可解.
解答 解:因为f′(x)=2cosx+3>0恒成立,所以f(x)在R上递增,
又f(-x)=2sin(-x)+3(-x)=-2sinx-3x=-f(x),
所以f(x)为奇函数,
则f(a-1)+f(1-2a)<0,可化为f(a-1)<f(2a-1),
由f(x)递增,得$\left\{\begin{array}{l}{a-1<2a-1}\\{-2<a-1<2}\\{-2<2a-1<2}\end{array}\right.$,
解得:0<a<$\frac{3}{2}$,
故答案为:$({0,\frac{3}{2}})$.
点评 本题考查函数的奇偶性、单调性及其应用,考查抽象不等式的求解,属中档题.
练习册系列答案
相关题目
16.等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是( )
| A. | 圆台 | B. | 圆锥 | C. | 圆柱 | D. | 球 |
14.某区实验幼儿园对儿童记忆能力x与识图能力y进行统计分析,得到如下数据:
由表中数据,求得线性回归方程为$y=\frac{4}{5}x+a$,当江小豆同学的记忆能力为12时,预测他的识图能力为( )
| 记忆能力x | 4 | 6 | 8 | 10 |
| 识图能力y | 3 | 5 | 6 | 8 |
| A. | 9 | B. | 9.5 | C. | 10 | D. | 11.5 |
11.命题“?x∈N,x≥0”的否定是( )
| A. | ?x∈N,x<0 | B. | ?x∉N,x≥0 | C. | ?x∈N,x<0 | D. | ?x∈N,x>0 |
18.将函数$y=4sin({4x+\frac{π}{6}})$的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移$\frac{π}{6}$个单位,则所得函数图象的一个对称中心为( )
| A. | (0,0) | B. | $({\frac{π}{3},0})$ | C. | $({\frac{π}{12},0})$ | D. | $({\frac{5}{8}π,0})$ |
15.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),设函数$f(x)=\overrightarrow m•\overrightarrow n$,则下列关于函数y=f(x)的性质的描述正确的是( )
| A. | 关于直线$x=\frac{π}{12}$对称 | B. | 关于点$({\frac{5π}{12},0})$对称 | ||
| C. | 周期为2π | D. | y=f(x)在$({-\frac{π}{3},0})$上是增函数 |
3.设a>0,b>0,且a+b≤4,则有( )
| A. | $\frac{1}{ab}$≥$\frac{1}{2}$ | B. | $\frac{1}{a2+b2}$≤$\frac{1}{4}$ | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}$+$\frac{1}{b}$≥1 |