题目内容

已知f(x)=(1+2x)(1+x)5,则导函数的展开式中x2的系数是
 
考点:二项式定理的应用,导数的运算
专题:导数的概念及应用,二项式定理
分析:根据导数的定义先求导,再根据二项式展开定理求出x2的系数
解答: 解:∵f(x)=(1+2x)(1+x)5
∴f′(x)=2(1+x)5+5(1+2x)(1+x)4
∵二项式(1+x)n的展开式通项是Tr+1=
C
r
n
xr

∴2(1+x)5的展开式中x2的系数是2
C
2
5
=20,
5(1+2x)(1+x)4展开式中x2的系数是5(
C
2
4
+2
C
1
4
)=70,
故导函数的展开式中x2的系数是20+70=90,
故答案为:90
点评:本题考查了导数的运算法则和二项式定理,属于基础题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网