题目内容

已知f(α)=
sin(
π
2
-α)sin(-α)tan(π-α)
tan(-α)sin(π-α)

(1)化简f(α).
(2)若α为第三象限角,且cos(
3
2
π-α)=
1
5
,求f(α)的值.
考点:同角三角函数基本关系的运用,运用诱导公式化简求值
专题:三角函数的求值
分析:(1)f(α)解析式利用诱导公式化简,约分即可得到结果;
(2)已知等式利用诱导公式化简求出sinα的值,根据α为第三象限角,利用同角三角函数间基本关系求出cosα的值,即可确定出f(α)的值.
解答: 解:(1)f(α)=
cosα(-sinα)(-tanα)
(-tanα)sinα
=-cosα;
(2)∵α为第三象限角,且cos(
3
2
π-α)=-sinα=
1
5

即sinα=-
1
5

∴cosα=-
1-sin2α
=-
2
6
5

则f(α)=-cosα=
2
6
5
点评:此题考查了同角三角函数基本关系的运用,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网