题目内容
1.下列推理正确的是( )| A. | 如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖 | |
| B. | 因为a>b,a>c,所以a-b>a-c | |
| C. | 若a,b均为正实数,则$lga+lgb≥\sqrt{lga•lgb}$ | |
| D. | 若a为正实数,ab<0,则$\frac{a}{b}+\frac{b}{a}=-(\frac{-a}{b}+\frac{-b}{a})≤-2\sqrt{\frac{-a}{b}•\frac{-b}{a}}=-2$≤-2 |
分析 A中,即使你买了彩票,你也不一定中奖;B中,a-b不一定大于a-c;C中,lga、lgb可能为负值;由均值定理知D正确.
解答 解:对于A,如果不买彩票,那么就不能中奖.即使你买了彩票,你也不一定中奖,故A错误;
对于B,因为a>b,a>c,但是a-b不一定大于a-c,故B错误;
对于C,lga、lgb可能为负值,不满足均值不等式成立条件;
对于D,a为正实数,ab<0,则$\frac{a}{b}+\frac{b}{a}=-(\frac{-a}{b}+\frac{-b}{a})≤2\sqrt{\frac{-a}{b}•\frac{-b}{a}}=-2$≤-2,故正确;
故选:D
点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意均值定理的合理运用.
练习册系列答案
相关题目
12.若双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)实轴的两个端点和抛物线x2=-4by的焦点连成一个等边三角形,则此双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
9.已知复数z=$\frac{1}{1-i}$,则$\overline{z}$•i在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
13.
高一(9)班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:则统计表中的a•p=65.
| 组数 | 分组 | 低碳族的人数 | 占本组的频率 |
| 第一组 | [25,30) | 120 | 0.6 |
| 第二组 | [30,35) | 195 | p |
| 第三组 | [35,40) | 100 | 0.5 |
| 第四组 | [40,45) | a | 0.4 |
| 第五组 | [45,50) | 30 | 0.3 |
| 第六组 | [50,55) | 15 | 0.3 |
10.已知函数y=2sin(ωx+θ)+a(ω>0,0<θ<π,a>0)为偶函数,其图象与直线y=2+a的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则( )
| A. | ω=2,$θ=\frac{π}{2}$ | B. | $ω=\frac{1}{2}$,$θ=\frac{π}{2}$ | C. | $ω=\frac{1}{2}$,$θ=\frac{π}{4}$ | D. | ω=2,$θ=\frac{π}{4}$ |