题目内容

9.若全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为A,函数y=log2(-2x2+5x+3)的定义域为B.
(1)求集合(∁UA)∩(∁UB);
(2)设函数g(x)=$\sqrt{-{x}^{2}+(a-1)x+a}$的定义域为集合C,若B∩C=B,求实数a的取值范围.

分析 (1)求出集合A,B,即可求集合(∁UA)∩(∁UB);
(2)求出集合C,由B∩C=B,可得B⊆C,即C=[-1,a]且a≥3,从而求实数a的取值范围.

解答 解:(1)由$\left\{\begin{array}{l}{x-2≥0}\\{x+1≥0}\end{array}\right.$,可得x≥2,∴A={x|x≥2}  …(1分)
由-2x2+5x+3>0,可得$B=\left\{{x\left|{-\frac{1}{2}<x<3}\right.}\right\}$…(3分)
CUA={x|x<2},${C_U}B=\left\{{x\left|{x≤-\frac{1}{2}或x≥3}\right.}\right\}$,∴(CUA)∩(CUB)=$\left\{{x\left|{x≤-\frac{1}{2}}\right.}\right\}$…(6分)
(2)∵$g(x)=\sqrt{-{x^2}+(a-1)x+a}$,∴定义域C={x|-x2+(a-1)x+a≥0}…(7分)
由-x2+(a-1)x+a≥0,得x2-(a-1)x-a≤0,即(x-a)(x+1)≤0,…(9分)
∵B∩C=B,∴B⊆C,∴C=[-1,a]且a≥3.
∴实数a的取值范围是a≥3.…(12分)

点评 本题考查函数的定义域,考查集合的关系与运算,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网