题目内容
“a3>b3”是“log3a>log3b”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:函数的性质及应用,简易逻辑
分析:根据指数函数和对数函数的图象和性质,求出两个命题的等价命题,进而根据充要条件的定义可得答案.
解答:
解:“a3>b3”?“a>b”,
“log3a>log3b”?“a>b>0”,
故“a3>b3”是“log3a>log3b”的必要不充分条件,
故选:B
“log3a>log3b”?“a>b>0”,
故“a3>b3”是“log3a>log3b”的必要不充分条件,
故选:B
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关题目
函数f(x)=
+
的最大值为( )
| 3x |
| 3(1-x) |
A、
| ||
B、
| ||
| C、3 | ||
D、2
|
函数f(x)=log
(x2+3x-4)的单调递增区间为( )
| 1 |
| 2 |
| A、(0,+∞) |
| B、(-∞,0) |
| C、(1,+∞) |
| D、(-∞,-4) |
已知i是虚数单位,a∈R,则“a=1”是“(a+i)2=2i”的( )
| A、充分必要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分也不必要条件 |
要证
-1>
-
,只需证
+
>
+1,即需证(
+
)2>(
+1)2,即需证
>
,即证35>11,因为35>11显然成立,所以原不等式成立.以上证明运用了( )
| 7 |
| 11 |
| 5 |
| 7 |
| 5 |
| 11 |
| 7 |
| 5 |
| 11 |
| 35 |
| 11 |
| A、比较法 | B、综合法 |
| C、分析法 | D、反证法 |
函数f(x)=1-xlnx的零点所在区间是( )
A、(0,
| ||
B、(
| ||
| C、(1,2) | ||
| D、(2,3) |