题目内容
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,一条垂直于x轴的直线交双曲线的右支于M,N两点,且MF1⊥MF2,△F1MN为等边三角形,则双曲线的离心率为( )| A. | $\frac{\sqrt{5}}{2}$ | B. | 1+$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}-1$ |
分析 由题意,∠MF1F2=30°,MF1⊥MF2,可得|MF1|=$\sqrt{3}$c,|MF2|=c,利用双曲线的定义,即可求出双曲线的离心率.
解答 解:由题意,∠MF1F2=30°,MF1⊥MF2,
∴|MF1|=$\sqrt{3}$c,|MF2|=c,
∴$\sqrt{3}$c-c=2a,
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1,
故选:B.
点评 本题考查双曲线的方程与性质,考查双曲线的定义,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
10.已知两点A(-3,0),B(3,0),动点M满足|MA|-|MB|=4,则动点M的轨迹是( )
| A. | 椭圆 | B. | 双曲线 | C. | 双曲线的一支 | D. | 抛物线 |
7.已知z1=m+i,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$=-$\frac{1}{2}$,则实数m的值为( )
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
4.若函数f(x)=$\left\{\begin{array}{l}{f(x-4)}\\{{{2}^{x}+∫}_{0}^{\frac{π}{6}}cos3tdt,x≤0}\end{array}\right.$,则f(2016)=( )
| A. | 1 | B. | 2 | C. | $\frac{4}{3}$ | D. | $\frac{5}{3}$ |
11.在某化学反应的中间阶段,压力保持不变,温度从1°变化到10°,反应结果如下表所示(x代表温度,y代表结果):
现算的$\sum_{i=1}^{10}$xi=55,$\sum_{i=1}^{10}$yi=123,$\sum_{i=1}^{10}$xiyi=844,$\sum_{i=1}^{10}$x2i=385.
(Ⅰ)以温度为横坐标,反应结果为纵坐标,画出散点图,并求化学反应的结果y对温度x的线性回归方程y=bx+a(精确到小数点后四位);
(Ⅱ)判断变量x与y之间是正相关还是负相关.
附:线性回归方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值,线性回归方程也可写为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| y | 3 | 5 | 7 | 10 | 11 | 14 | 15 | 17 | 20 | 21 |
(Ⅰ)以温度为横坐标,反应结果为纵坐标,画出散点图,并求化学反应的结果y对温度x的线性回归方程y=bx+a(精确到小数点后四位);
(Ⅱ)判断变量x与y之间是正相关还是负相关.
附:线性回归方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值,线性回归方程也可写为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
9.已知sinα=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,tanβ=-3,且$\frac{π}{2}$<β<π,则α+β的值为( )
| A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |