题目内容

18.四面体ABCD四个面重心分别为E、F、G、H,则四面体EFGH表面积与四面体ABCD表面积的比值为1:9.

分析 连接AF、AG并延长与BC、CD相交于M、N,推出四面体EFGH与四面体ABCD是相似的,可求出它们的相似比,面积比是相似比的平方.

解答 解:如图,连接AF、AG并延长与BC、CD相交于M、N,
由于F、G分别是三角形的重心,
所以M、N分别是BC、CD的中点,
且AF:AM=AG:AN=2:3,
所以FG:MN=2:3,
又MN:BD=1:2,所以FG:BD=1:3,
即两个四面体的相似比是1:3,
所以两个四面体的表面积的比是1:9.
故答案为1:9.

点评 本题考查棱锥的结构特征,考查作图能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网