题目内容
10.已知(1-2x)2013=a0+a1x+a2x2+…+a2013x2013,则a1+a2+…+a2013=-2.分析 令x=0可得a0=1,再令x=1,可得a0+a1+a2+…+a2013=-1,从而求得a1+a2+…+a2013的值.
解答 解:∵(1-2x)2013=a0 +a1x+a2x2+…+a2013x2013,∴令x=0可得a0=1,
再令x=1,可得a0+a1+a2+…+a2013=-1,∴a1+a2+…+a2013=-2,
故答案为:-2.
点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
练习册系列答案
相关题目
20.已知向量$\overrightarrow a=(1,x),\overrightarrow b=(-1,x)$,若$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow b$.则$|{\overrightarrow a}|$=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4 |
1.若数列{an}的通项公式an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),{an}的最大项为第p项,最小项为第q项,则q-p等于( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
18.等差数列{an}中,a4+a7+a9+a12=32,则能求出值的是( )
| A. | S12 | B. | S13 | C. | S15 | D. | S14 |
15.某位同学为了研究气温对饮料销售的影响,经过对某小卖部的统计,得到一个卖出的某种饮料杯数与当天气温的对比表.他分别记录了3月21日至3月25日的白天平均气温x(℃)与该小卖部的这种饮料销量y(杯),得到如下数据
(1)若先从这五组数据中任取2组,求取出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(2)中所得的线性回归方程,若天气预报3月26日的白天平均气温7(℃),请预测小卖部的这种饮料的销量.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 日 期 | 3月21日 | 3月22日 | 3月23日 | 3月24日 | 3月25日 |
| 平均气温x(°C) | 8 | 10 | 14 | 11 | 12 |
| 销量y(杯) | 21 | 25 | 35 | 26 | 28 |
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(2)中所得的线性回归方程,若天气预报3月26日的白天平均气温7(℃),请预测小卖部的这种饮料的销量.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
2.做一个圆柱形锅炉,容积为8π,两个底面的材料每单位面积的价格为2元,侧面的材料每单位面积的价格为4元.则当造价最低时,锅炉的底面半径与高的比为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |