题目内容
1.若数列{an}的通项公式an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),{an}的最大项为第p项,最小项为第q项,则q-p等于( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 设$(\frac{2}{5})^{n-1}$=t∈(0,1],an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),可得an=5t2-4t=$5(t-\frac{2}{5})^{2}$-$\frac{4}{5}$∈$[-\frac{4}{5},1]$,利用二次函数的单调性即可得出.
解答 解:设$(\frac{2}{5})^{n-1}$=t∈(0,1],an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),
∴an=5t2-4t=$5(t-\frac{2}{5})^{2}$-$\frac{4}{5}$,
∴an∈$[-\frac{4}{5},1]$,
当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值.
∴q-p=2-1=1,
故选:A.
点评 本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
13.已知直线ax+by-1=0在y轴上的截距为-1,且它的倾斜角是直线$\sqrt{3}$x-y-$\sqrt{3}$=0的倾斜角的2倍,则a,b的值分别为( )
| A. | $\sqrt{3}$,1 | B. | $\sqrt{3}$,-1 | C. | -$\sqrt{3}$,1 | D. | -$\sqrt{3}$,-1 |
12.已知sin$\frac{θ}{2}$=$\frac{3}{5}$,cos$\frac{θ}{2}$=-$\frac{4}{5}$,则点P(cosθ,sinθ)位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
16.下列函数中,同时满足①在(0,$\frac{π}{2}$)上是增函数,②为偶函数,③以π为最小正周期的函数是( )
| A. | f(x)=tanx | B. | f(x)=cos2x | C. | f(x)=|sin2x| | D. | f(x)=|sinx| |
6.设a>0,b>0,A(1,-2),B(a,-1),C(-b,0),若A,B,C三点共线,则$\frac{2}{a}+\frac{1}{b}$的最小值是( )
| A. | 3+2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6 | D. | 9 |