题目内容

数列{an}满足:a1=1,an+1=3an,n∈N+
(1)求{an}的通项公式及前n项和Sn
(2)已知{bn}是等差数列,且b1=a1,b3=a3,Tn为{anbn}的前n项和,求Tn
考点:数列的求和,等比数列的前n项和
专题:等差数列与等比数列
分析:(1)由已知得{an}是首项为1,公比为3的等比数列,由此能求出{an}的通项公式及前n项和Sn
(2)由已知得b1=a1=1,b3=a3=32=9,从而d=
b3-b1
3-1
=
9-1
3-1
=4,进而bn=1+(n-1)×4=4n-3,由此得到anbn=(4n-3)3n-1,再利用错位相减法能求出{anbn}的前n项和.
解答: 解:(1)∵数列{an}满足:a1=1,an+1=3an,n∈N+
∴{an}是首项为1,公比为3的等比数列,
∴an=3n-1.Sn=
1-3n
1-3
=
3n-1
2

(2)∵{bn}是等差数列,且b1=a1,b3=a3
∴b1=a1=1,b3=a3=32=9
∴d=
b3-b1
3-1
=
9-1
3-1
=4,
∴bn=1+(n-1)×4=4n-3,
∵由(1)可得anbn=(4n-3)3n-1
∴Sn=30+5×31+9×32+…+(4n-7)×3n-2+(4n-3)×3n-1
3Sn=31+5×32+9×33+…+(4n-7)×3n-1+(4n-3)×3n
两式相减得:
-2Sn=1+4×3+4×32+4×33+…+4×3n-1-(4n-3)×3n
=1+4(3+32+33+…+3n-1)-(4n-3)×3n
=1+
4×3×(1-3n-1)
1-3
-(4n-3)×3n
=(5-4n)×3n-5,
∴Sn=
(4n-5)3n+5
2
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网