题目内容
已知数列{an}满足a1=
,an+1=an+
(n∈N*).证明:对一切n∈N*,有
(Ⅰ)
<
;
(Ⅱ)0<an<1.
| 1 |
| 3 |
| ||
| n2 |
(Ⅰ)
| an+1-an |
| an+1an |
| 1 |
| n2 |
(Ⅱ)0<an<1.
考点:数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得an>0,an+1=an+
>0(n∈N*),an+1-an=
>0,由此能证明对一切n∈N*,
<
.
(Ⅱ)由已知得
-
<
,当n≥2时,
=
-
(
-
)>
-
>
>1,由此能证明对一切n∈N*,0<an<1.
| ||
| n2 |
| an2 |
| n2 |
| an+1-an |
| an+1an |
| 1 |
| n2 |
(Ⅱ)由已知得
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| k2 |
| 1 |
| an |
| 1 |
| a1 |
| n-1 |
| k=1 |
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| a1 |
| n-1 |
| k=1 |
| 1 |
| k2 |
| n |
| n-1 |
解答:
证明:(Ⅰ)∵数列{an}满足a1=
,an+1=an+
(n∈N*),
∴an>0,an+1=an+
>0(n∈N*),an+1-an=
>0,
∴an+1<an+
,
∴对一切n∈N*,
<
.
(Ⅱ)由(Ⅰ)知,对一切k∈N*,ak+1=ak+
<ak+
akak+1,
∴
-
<
,
∴当n≥2时,
=
-
(
-
)>
-
>3-[1+
]
=3-[1+
(
-
)]
=3-(1+1-
)
=
>1,
∴an<1,又a1=
<1,
∴对一切n∈N*,0<an<1.
| 1 |
| 3 |
| ||
| n2 |
∴an>0,an+1=an+
| ||
| n2 |
| an2 |
| n2 |
∴an+1<an+
| an•an+1 |
| n2 |
∴对一切n∈N*,
| an+1-an |
| an+1an |
| 1 |
| n2 |
(Ⅱ)由(Ⅰ)知,对一切k∈N*,ak+1=ak+
| ak2 |
| k2 |
| 1 |
| k2 |
∴
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| k2 |
∴当n≥2时,
| 1 |
| an |
| 1 |
| a1 |
| n-1 |
| k=1 |
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| a1 |
| n-1 |
| k=1 |
| 1 |
| k2 |
>3-[1+
| n-1 |
| k=1 |
| 1 |
| k(k-1) |
=3-[1+
| n-1 |
| k=1 |
| 1 |
| k-1 |
| 1 |
| k |
=3-(1+1-
| 1 |
| n-1 |
=
| n |
| n-1 |
∴an<1,又a1=
| 1 |
| 3 |
∴对一切n∈N*,0<an<1.
点评:本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.
练习册系列答案
相关题目
已知平面向量
,
满足|
|=
,|
|=2,
•
=-3,则|
+2
|=( )
| a |
| b |
| a |
| 3 |
| b |
| a |
| b |
| a |
| b |
| A、1 | ||
B、
| ||
C、4+
| ||
D、2
|
设数列{an}的前n项和为Sn,且a1=1,{Sn+nan}为常数列,则an=( )
A、
| ||
B、
| ||
C、
| ||
D、
|